Labour Day Special 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: exams65

Google Updated Professional-Machine-Learning-Engineer Exam Blueprint, Syllabus and Topics

Google Professional Machine Learning Engineer

Last Update May 5, 2024
Total Questions : 268

You will be glad to know that we serve better with the real exam topics related to your subject. We give you Machine Learning Engineer Professional-Machine-Learning-Engineer questions answers. You can prepare them easily and quickly. Google Professional-Machine-Learning-Engineer exam dumps are also available with accurate exam content. All Exam questions of Machine Learning Engineer Professional-Machine-Learning-Engineer Exam are related to latest Google Professional Machine Learning Engineer topics, let’s take a look:

Professional-Machine-Learning-Engineer pdf

Professional-Machine-Learning-Engineer PDF

$35  $99.99
Professional-Machine-Learning-Engineer Engine

Professional-Machine-Learning-Engineer Testing Engine

$42  $119.99
Professional-Machine-Learning-Engineer PDF + Engine

Professional-Machine-Learning-Engineer PDF + Testing Engine

$56  $159.99

Google Professional-Machine-Learning-Engineer Exam Overview :

Exam Name Google Professional Machine Learning Engineer
Exam Code Professional-Machine-Learning-Engineer
Actual Exam Duration 120 minutes
Exam Registration Price $200
Official Information https://cloud.google.com/certification/guides/machine-learning-engineer
See Expected Questions Google Professional-Machine-Learning-Engineer Expected Questions in Actual Exam
Take Self-Assessment Use Google Professional-Machine-Learning-Engineer Practice Test to Assess your preparation - Save Time and Reduce Chances of Failure

Google Professional-Machine-Learning-Engineer Exam Topics :

Section Objectives
Framing ML problems

1.1 Translating business challenges into ML use cases. Considerations include:

  • Choosing the best solution (ML vs. non-ML, custom vs. pre-packaged [e.g., AutoML, Vision API]) based on the business requirements
  • Defining how the model output should be used to solve the business problem
  • Deciding how incorrect results should be handled
  • Identifying data sources (available vs. ideal)

1.2 Defining ML problems. Considerations include:

  • Problem type (e.g., classification, regression, clustering)
  • Outcome of model predictions
  • Input (features) and predicted output format

1.3 Defining business success criteria. Considerations include:

  • a. Alignment of ML success metrics to the business problem
  • b. Key results
  • c. Determining when a model is deemed unsuccessful

1.4 Identifying risks to feasibility of ML solutions. Considerations include:

  • a. Assessing and communicating business impact
  • b. Assessing ML solution readiness
  • c. Assessing data readiness and potential limitations
  • d. Aligning with Google’s Responsible AI practices (e.g., different biases)
Architecting ML solutions

2.1 Designing reliable, scalable, and highly available ML solutions. Considerations include:

  • Choosing appropriate ML services for the use case (e.g., Cloud Build, Kubeflow)
  • Component types (e.g., data collection, data management)
  • Exploration/analysis
  • Feature engineering
  • Logging/management
  • Automation
  • Orchestration
  • Monitoring
  • Serving

2.2 Choosing appropriate Google Cloud hardware components. Considerations include:

  • Evaluation of compute and accelerator options (e.g., CPU, GPU, TPU, edge devices)

2.3 Designing architecture that complies with security concerns across sectors/industries.

Considerations include:

  • Building secure ML systems (e.g., protecting against unintentional exploitation of data/model, hacking)
  • Privacy implications of data usage and/or collection (e.g., handling sensitive data such as Personally Identifiable Information [PII] and Protected Health Information [PHI])
Designing data preparation and processing systems

3.1 Exploring data (EDA). Considerations include:

  • a. Visualization
  • b. Statistical fundamentals at scale
  • c. Evaluation of data quality and feasibility
  • d. Establishing data constraints (e.g., TFDV)

3.2 Building data pipelines. Considerations include:

  • a. Organizing and optimizing training datasets
  • b. Data validation
  • c. Handling missing data
  • d. Handling outliers
  • e. Data leakage

3.3 Creating input features (feature engineering). Considerations include:

  • a. Ensuring consistent data pre-processing between training and serving
  • b. Encoding structured data types
  • c. Feature selection
  • d. Class imbalance
  • e. Feature crosses
  • f. Transformations (TensorFlow Transform)
Developing ML models

4.1 Building models. Considerations include:

  • Choice of framework and model
  • Modeling techniques given interpretability requirements
  • Transfer learning
  • Data augmentation
  • Semi-supervised learning
  • Model generalization and strategies to handle overfitting and underfitting

4.2 Training models. Considerations include:

  • Ingestion of various file types into training (e.g., CSV, JSON, IMG, parquet or databases, Hadoop/Spark)
  • Training a model as a job in different environments
  • Hyperparameter tuning
  • Tracking metrics during training
  • Retraining/redeployment evaluation

4.3 Testing models. Considerations include:

  • Unit tests for model training and serving
  • Model performance against baselines, simpler models, and across the time dimension
  • Model explainability on Vertex AI

4.4 Scaling model training and serving. Considerations include:

  • Distributed training
  • Scaling prediction service (e.g., Vertex AI Prediction, containerized serving)
Automating and orchestrating ML pipelines

5.1 Designing and implementing training pipelines. Considerations include:

  • a. Identification of components, parameters, triggers, and compute needs (e.g., Cloud Build, Cloud Run)
  • b. Orchestration framework (e.g., Kubeflow Pipelines/Vertex AI Pipelines, Cloud Composer/Apache Airflow)
  • c. Hybrid or multicloud strategies
  • d. System design with TFX components/Kubeflow DSL

5.2 Implementing serving pipelines. Considerations include:

  • a. Serving (online, batch, caching)
  • b. Google Cloud serving options
  • c. Testing for target performance
  • d. Configuring trigger and pipeline schedules

5.3 Tracking and auditing metadata. Considerations include:

  • a. Organizing and tracking experiments and pipeline runs
  • b. Hooking into model and dataset versioning
  • c. Model/dataset lineage
Monitoring, optimizing, and maintaining ML solutions

6.1 Monitoring and troubleshooting ML solutions. Considerations include:

  • Performance and business quality of ML model predictions
  • Logging strategies
  • Establishing continuous evaluation metrics (e.g., evaluation of drift or bias)
  • Understanding Google Cloud permissions model
  • Identification of appropriate retraining policy
  • Common training and serving errors (TensorFlow)
  • ML model failure and resulting biases

6.2 Tuning performance of ML solutions for training and serving in production.

Considerations include:

  • Optimization and simplification of input pipeline for training
  • Simplification techniques

Professional-Machine-Learning-Engineer Questions Answers | Professional-Machine-Learning-Engineer Test Prep | Google Professional Machine Learning Engineer Questions PDF | Professional-Machine-Learning-Engineer Online Exam | Professional-Machine-Learning-Engineer Practice Test | Professional-Machine-Learning-Engineer PDF | Professional-Machine-Learning-Engineer Test Questions | Professional-Machine-Learning-Engineer Study Material | Professional-Machine-Learning-Engineer Exam Preparation | Professional-Machine-Learning-Engineer Valid Dumps | Professional-Machine-Learning-Engineer Real Questions | Machine Learning Engineer Professional-Machine-Learning-Engineer Exam Questions